报告人:Seth S. Berbano
时间: 2019年4月4日 上午10:00-11:30
地点: 仲英楼新葡萄8883官网AMG第一会议室
简介:Seth Berbano博士是村田电子北美分部研究员(Murata Electronics North America, Inc),美国介电、压电研究中心企业顾问代表(NSF I/UCRC Center for Dielectric & Piezoelectrics)。2011年在美国爱荷华州立大学取得材料学学士学位,2016年在美国宾夕法尼亚州立大学取得材料学博士学位,导师为Clive Randall教授和Michael Lanagan教授。曾于2009年、2010年和2015年分别在日本大阪府立大学Masahiro Tatsumisago教授课题组、韩国庆尚大学Hyo-Jun Ahn教授课题组和日本太阳诱研究中心交流合作。Berbano博士主要研究方向是固态锂离子电池、低温烧结、电子功能陶瓷等,曾在Adv. Funct. Mater.、J. Am. Chem. Soc.等期刊上发表高水平论文,担任Chem. Mater.,J. Am. Chem. Soc.等国际期刊审稿人。曾获得Alfred R. Cooper Scholars Award、George Washington Carver Scholarship等荣誉和奖励。
摘要:In this talk, I’ll discuss the cold sintering process and focus on its application to solid electrolytes. Solid electrolytes are enabling materials for solid-state batteries. Solid electrolytes are of interest for safer and more reliable replacements to liquid electrolytes at a wide range of operating temperatures. Using cold sintering, the solid electrolyte Li1+xAlxGe2-x(PO4)3 (x = 0.50) was densified to around 80 % theoretical density in minutes at 120 oC and 400 MPa. In order to bridge ionically resistive grain boundaries, a 5 minute post-processing at 650 oC was required. High volume fractions of ceramic electrolyte could be co-sintered with polymer. Up to 95 vol. % Li1.5Al0.5Ge1.5(PO4)3 + 5 vol. % Poly(vinylidene fluoride hexafluoropropylene) composite electrolytes were cold sintered at 120 oC to densities exceeding 85 %. After soaking in 1 M LiPF6 ethylene carbonate-dimethyl carbonate (50 EC:50 DMC vol. %), composite electrolyte ionic conductivities at 25 oC reached 10-4 S/cm. Using cold sintering, processing and integration of solid electrolytes and other important technical ceramics may now be possible at polymer processing temperatures.