坚永鑫

职 称:副教授

所在系所:铸造研究室

个人主页:http://gr.xjtu.edu.cn/web/yxjian

E-MAIL:yxjian@xjtu.edu.cn

专业方向:先进抗磨蚀材料与涂层设计开发


专业领域方向

高速激光熔覆涂层设计与制备;

金属模具与难熔金属3D打印;

金属陶瓷与硬质合金材料;

材料摩擦磨损、腐蚀与氧化行为表征

学习及工作经历

2021.10—         新葡萄8883官网AMG材料科学与工程学院    副教授

2018.12—2021.10   新葡萄8883官网AMG材料科学与工程学院    讲师

2017.10—2018.10   美国Purdue University               访问学者

2013.09—2018.12   新葡萄8883官网AMG材料科学与工程学院    硕士、博士研究生

2009.09—2013.07   新葡萄8883官网AMG材料科学与工程学院    大学本科

科研项目

主持国家自然科学基金、国家重点研发计划专题任务、中国博士后科学基金与陕西省自然科学基金等国家与省部级项目6项,海洋防污创新基金项目1项,国家级科研平台开发基金2项,以及华能集团、中石油等企业委托横向课题8项。


国家与省部级项目:

国家自然科学基金(青年项目):基于取向M2B调控的Fe-Cr-B合金表面“钉扎效应”致密润滑膜构筑机理及高温摩擦学行为,30万,主持,在研;

国家重点研发计划课题:智能化热加工全过程数值模拟与组织性能预测仿真平台研发,280万,骨干,结题;

海洋防务创新基金:xxx xxx JG项目,23.5万,主持,结题;

中国博士后科学基金:(2023M732752),8万,主持,在研;

中央高校基本科研业务费:激光熔覆原位构筑"双梯度"Mo2FeB2金属陶瓷涂层及其高温摩擦学行为,10万,主持,在研;

陕西省自然科学基金:铸造铁硼合金中Fe2B相韧性/形态同步优化及其耐磨性研究,3万,主持,在研;

龙门实验室前沿探索项目:海洋环境构件表面Mo2NiB2-Ni基复合涂层激光熔覆原位制备及其耐磨蚀性能研究,20万,主持,在研;

山西省揭榜挂帅:大型油膜轴承修复/强化用智能化激光熔覆成套装备技术及应用,54.6万,骨干,在研

高端轴承摩擦学技术与应用国家地方联合工程实验室开放基金项目:基于自生 MoO3自润滑相调控的AlCoCrFeNiMox 高熵合金涂层设计及高温摩擦学行为研究,10万,主持,在研

装备预研:高速载流移动接触部件表面损伤机制与冷喷涂固态再制造,70万,参与,在研;

金属材料磨损控制与成型技术国家地方联合工程研究中心开放基金:基于富钼微叠层析出的Fe2B形态调控及Fe-B合金组相抗磨行为研究,5万,主持,在研

中国博士后科学基金(2019M663700),8万,主持,结题

新葡萄8883官网AMG“新教师科研支持计划”,10万,主持,结题

国家自然科学基金:基于运动磨粒三维形貌的磨损机理表征及磨损状态监测方法,72万,参与,结题


横向课题:

锅炉受热面防护涂层材料及现场熔覆工艺开发与覆层安全服役性能评价(华能集团),116.9万,主持,在研;

WC基金属陶瓷复合材料制备研究(中国船舶),36.1万,主持,在研;

高能氧化剂燃烧气体产物与材料相容性研究(204所),27.67万,主持,在研;

超高速激光熔覆镍基625涂层制备及原位电化学冲蚀磨损性能评价(中石油),14.64万,主持,在研;

铸造耐磨材料技术开发(国家电力装备),50万,骨干,在研;

泥沙输送管道冲蚀磨损性能评价(钢铁研究总院),3.78万,主持,结题;

高温气冷堆蒸汽发生器堵管技术验证平台及堵管质量智能在线监测系统研发(华能集团),397.7万,参与,结题

甲醇中心合成中间换热器焊缝裂纹原因分析及安全评估项目(中煤集团),41.6万,骨干,结题。


论文与专利:

以第一或通讯作者发表SCI论文30余篇,中文核心论文5篇,申请/授权发明专利10余项。近5年发表的主要论文及专利情况如下:

[1]Yu Wang, Jian YX*, Rongbo Xu et al. Microstructure Evolution and Mechanical Behaviors of P92 Steel Welded Joint with Repetitive Post Tempering [J]. Advanced Engineering Materials, 2023, 2300018. (SCI)

[2]Jian YX*, Hongjun Qi, Zhang JY, et al. Effects of trace Si addition on the microstructure evolution and mechanical properties of MoAlB ceramic [J]. Journal of Alloys and Compounds, 2023, 941:168873. (SCI)

[3]Cao Z, Jian YX*, Zhao ZS, et al. On the dissolution and enhancement mechanisms of Cr doping in Mo2FeB2-based cermets [J]. Ceramics International, 2023, 49:6139-6148. (SCI)

[4]Cao Z, Jian YX*, Zhao ZS, et al. Effect of V doping on the microstructure and mechanical properties of Mo2FeB2-based cermets and investigation on the enhancement mechanism [J]. Journal of Alloys and Compounds, 2023, 931:167545. (SCI)

[5]Cao Z, Jian YX*, Zhao Zhongshuai, et al. On the reaction mechanism of Mo2FeB2-based cermets and wear transition induced by self-lubricating tribo-oxide layer [J]. International Journal of Refractory Metals and Hard Materials, 2023, 110:106012. (SCI)

[6]Yang Z, Jian YX*, Chen Z et al. Microstructure, hardness and slurry erosion-wear behaviors of high-speed laser cladding Stellite 6 coatings prepared by the inside-beam powder feeding method [J]. Journal of Materials Research and Technology, 2022, 19:2596-2610. (SCI)

[7]Cao Z, Jian YX*, Huang ZF, et al. Dual effects of Cr doping on the high-temperature oxidation behavior of Mo2FeB2-based cermets [J]. Corrosion Science, 2022, 204:110358. (SCI)

[8]Jian YX*, Hongjun Qi, Huang ZF, et al. Preparation, microstructure and mechanical properties of MoAlB-0.15% Si ceramics with superior strength and toughness [J]. Ceramics International, 2022, 48: 1567–1573. (SCI)

[9]Jian YX*, Ning HY, Huang ZF, et al. Three-body abrasive wear behaviors and mechanism analysis of Fe-B-C cast alloys with various Mn contents [J]. Journal of Materials Research and Technology, 2021, 14:1301-1311. (SCI)

[10]Cao Z, Jian YX*, Huang ZF, et al. High-temperature cyclic oxidation behavior and mechanism of Mo2FeB2-based cermets with various boron contents [J]. Corrosion Science, 2021, 190:109665. (SCI)

[11]Jian YX*, Huang ZF, Wang Y, et al. Solidification process, microstructure, and mechanical properties of Cr-doped high boron Fe-based alloy [J]. Materials Chemistry and Physics, 2021, 267: 124592. (SCI)

[12]Zhang JY, Jian YX*, Zhao XZ, et al. The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment [J]. Journal of Magnesium and Alloys, 2021, 9:1187-1200. (SCI)

[13]Jian YX*, Huang ZF, Liu XT, et al. Microstructure, mechanical properties and toughening mechanism of directional Fe2B crystal in Fe-B alloy with trace Cr addition [J]. Journal of Materials Science & Technology, 57 (2020) 172-179. (SCI)

[14]Shen YB, Huang ZF, Zhang L, Li KM, Cao Z, Xiao P, Jian YX*. Sintering Mechanism, Microstructure Evolution, and Mechanical Properties of Ti-Added Mo2FeB2-Based Cermets [J]. Materials, 2020, 13(8):1889.(SCI)

[15]Shen YB, Huang ZF, Xiao P, Zhang L, Li KM, Cao Z, Jian YX*. Sintering mechanism, microstructure evolution and nanomechanical properties of Cr-added Mo2FeB2 based cermets [J]. Ceramics International, 2020, 46(10):15482-15491. (SCI)

[16]Jian YX*, Xing JD, Huang ZF, et al. Quantitative characterization of the wear interactions between the boride and metallic matrix in Fe-3.0 wt% B duplex alloy[J]. Wear, 2019: 203021. (SCI)

[17]Zhang L, Huang ZF, Liu YZ, Jian YX*, et al. Effect of Ni content on the microstructure, mechanical properties and erosive wear of Mo2NiB2–Ni cermets[J]. Ceramics International, 2019, 45(16): 19695-19703. (SCI)

[18]Zhang L, Huang ZF, Jian YX*, et al. High-temperature compressive properties and tribological behaviour of Mo2NiB2–Ni cermets[J]. Ceramics International, 2019, 45(15): 18413-18421. (SCI)

[19]Chen Z, Bao C, Wu G, Jian YX*, et al. Effects of YAl2 reinforced particles on the tribological properties of LA143 alloy under dry sliding condition[J]. Wear, 2019, 438: 203077. (SCI)

[20]Jian YX, Huang ZF, Xing JD, et al. Phase stability, mechanical properties and electronic structures of Ti-Al binary compounds by first principles calculations[J]. Materials Chemistry and Physics, 2019, 221: 311-321. (SCI)

[21]Jian YX, Huang ZF, Xing JD, et al. Investigations on the mechanical properties and three-body wear behaviors of single Fe2B bulks with different chromium additions[J]. Wear, 2019, 418: 273-280. (SCI)

[22]Jian YX*, Huang ZF, Liu XT, et al. Comparative investigation on the stability, electronic structures and mechanical properties of Mo2FeB2 and Mo2NiB2 ternary borides by first-principles calculations[J]. Results in Physics, 2019, 15: 102698.

[23]Jian YX, Huang ZF, Xing JD, et al. Effects of chromium on the morphology and mechanical properties of Fe2B intermetallic in Fe-3.0 B alloy[J]. Journal of Materials Science, 2018, 53(7): 5329-5338. (SCI)

[24]刘亚坤,坚永鑫*,孔寒冰等. 微量 Y 和 Si 掺杂对 MoAlB 陶瓷显微组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(4): 329-337.

[25]王瑜,坚永鑫*,党文静等. 热处理工艺对 Fe-Si-Mn-Cr 低合金耐磨钢组织及力学性能的影响[J]. 热加工工艺, 2023.

[26]王瑜,坚永鑫*,胡鹏飞等. 多次热处理对超超临界锅炉用P92钢显微组织及硬度的影响[J]. 铸造技术, 2023, 44(11): 997-1003.


专利:

[1]一种P92钢的脉冲时效强化方法及强化处理的P92钢, ZL202210178327.2,2022-12-09.

[2]一种高强度高熵合金粘结相纳米级硬质合金及其制备方法,202310365912.8, 2023-4-7.

[3]超高速脉冲功率激光熔覆 Y2O3镍基合金涂层及其制备方法, 202310363506.8, 2023-4-7.

[4]一种Si掺杂改性MoAlB陶瓷及其制备方法, CN202011308888.7, 2021-02-26.

[5]一种掺杂元素铈P92的不锈钢管及其焊后循环热处理方法, CN202110137075.4, 2021-06-15.

[6]一种纳米M2B增强铁基耐磨涂层及其制备方法, CN202110169359.1, 2021-06-18.

[7]一种高强度MAB陶瓷致密块体及其制备方法, CN202010784681.0, 2020-12-22.

[8] 一种高抗磨定向Fe2B致密块体及其制备方法, CN201911360572.X, 2020-04-28.

[9]一种多孔自润滑Fe2B-Fe金属陶瓷复合材料及其制备方法, CN201811436979.1, 2019-01-18.

[10]一种改性Mo2FeB2基金属陶瓷及其制备方法, CN201910110210.9, 2019-05-31.

[11]一种稀土元素改性Mo2FeB2基金属陶瓷及其制备方法, CN201910110152.X, 2019-06-11.

[12]一种高强耐磨FeB材料的制备方法, CN201811436981.9, 2019-01-18